p53 Lesions in Leukemic Transformation

TO THE EDITOR: Myeloproliferative neoplasms have an inherent tendency toward leukemic transformation. The genetic mechanisms of transformation remain largely unknown. We analyzed biopsy specimens of myeloproliferative neoplastic tissue from 330 patients for chromosomal aberrations associated with leukemic transformation (the analysis was performed with the use of Genome-Wide Human SNP [single-nucleotide polymorphism] Array, Affymetrix). Of those patients, 308 had chronic-phase myeloproliferative neoplasms and 22 had postmyeloproliferative-phase neoplasm secondary acute myeloid leukemia (AML). Among these 22 patients, 1 carried the myeloproliferative leukemia virus oncogene (MPL) W515L and all others carried the Janus kinase 2 gene (JAK2) V617F mutation. Amplifications of chromosome 1q were significantly associated with transformation to AML (0.32% in patients with chronic-phase myeloproliferative neoplasms and 18.18% in patients with secondary AML; P<0.001). The minimal amplified region on chromosome 1q (201.0 to 204.5 Mbp) harbored MDM4 (Fig. 1A), a potent inhibitor of p53 often amplified in several types of cancer. This observation led us to investigate the involvement of the p53 pathway in postmyeloproliferative-neoplasm AML.

We sequenced the TP53 gene from all patients in whom leukemic transformation had occurred and found that 6 patients (27.3%) carried somatic mutations. Three of the patients had independent mutations in TP53, and another 3 had biallelic mutations. The mutations were C135S, M246K, N239D, and S261T. The results are presented in Table 1.

<table>
<thead>
<tr>
<th>Patient</th>
<th>TP53 Mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>C135S</td>
</tr>
<tr>
<td>17</td>
<td>M246K</td>
</tr>
<tr>
<td>17</td>
<td>N239D</td>
</tr>
<tr>
<td>17</td>
<td>S261T</td>
</tr>
</tbody>
</table>

The New England Journal of Medicine

Copyright © 2011 Massachusetts Medical Society. All rights reserved.
dent mutations on both TP53 alleles, and 2 had homozygous mutations because of an acquired uniparental disomy of chromosome 17p. One patient had only one mutated TP53 allele (Table 1). None of the patients with TP53 mutations had amplification of chromosome 1q. The phenomenon of mutual exclusivity of TP53 mutations and MDM4 amplifications has been also observed in solid tumors.2

Among the 22 patients with postmyeloproliferative-neoplasm AML, 10 (45.5%) had evidence of a p53-related defect mediated by TP53 gene mutations or gains of chromosome 1q (Table 1). We detected monoallelic TP53 mutations (R283C and E298K) in 2 of 65 patients with chronic-phase myeloproliferative neoplasms, indicating that low mutation frequency is associated with this condition (3.1%). Thus, in our cohort, TP53 mutations were strongly associated with transformation to AML in patients with myeloproliferative neoplasms (P=0.003). Recent reports have implicated IDH1/2, LNK, and IKZF1 in this transformation.3-5 We found one mutation in IDH1 and one in IDH2 in postmyeloproliferative-neoplasm AML but no LNK mutations (Table 1). In our cohort, TP53 mutations and 1q gains were the most frequent lesions associated with postmyeloproliferative-neoplasm AML.

Tissue samples from chronic-phase myeloproliferative neoplasms were available from two of the patients who carried biallelic TP53 mutations and whose condition had progressed to secondary AML. Patient 8 carried both TP53 mutations in the chronic phase, but in a smaller clone; in Patient 17, only one of the two mutations was present in the chronic phase (Fig. 1B). The fact

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>JAK2</th>
<th>MPL</th>
<th>Gains of Chromosome 1q</th>
<th>TP53</th>
<th>IDH1</th>
<th>IDH2</th>
<th>LNK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V617F</td>
<td>Wild type</td>
<td>—</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
</tr>
<tr>
<td>2</td>
<td>V617F</td>
<td>Wild type</td>
<td>—</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
</tr>
<tr>
<td>3</td>
<td>V617F</td>
<td>Wild type</td>
<td>—</td>
<td>Wild type</td>
<td>Wild type</td>
<td>R140W</td>
<td>Wild type</td>
</tr>
<tr>
<td>4</td>
<td>V617F</td>
<td>Wild type</td>
<td>Yes</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
</tr>
<tr>
<td>5</td>
<td>V617F</td>
<td>Wild type</td>
<td>—</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
</tr>
<tr>
<td>6</td>
<td>V617F</td>
<td>Wild type</td>
<td>—</td>
<td>c.994-2 A>G (17pUPD)</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
</tr>
<tr>
<td>7</td>
<td>V617F</td>
<td>Wild type</td>
<td>Yes</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
</tr>
<tr>
<td>8</td>
<td>V617F</td>
<td>Wild type</td>
<td>—</td>
<td>C1355/M246K</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
</tr>
<tr>
<td>9</td>
<td>V617F</td>
<td>Wild type</td>
<td>—</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
</tr>
<tr>
<td>10</td>
<td>V617F</td>
<td>Wild type</td>
<td>Yes</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
</tr>
<tr>
<td>11</td>
<td>V617F</td>
<td>Wild type</td>
<td>—</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
</tr>
<tr>
<td>12</td>
<td>V617F</td>
<td>Wild type</td>
<td>—</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
</tr>
<tr>
<td>13</td>
<td>V617F</td>
<td>Wild type</td>
<td>—</td>
<td>N239D (17pUPD)</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
</tr>
<tr>
<td>14</td>
<td>V617F</td>
<td>Wild type</td>
<td>—</td>
<td>c.560-1 G>A/Y220H</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
</tr>
<tr>
<td>15</td>
<td>V617F</td>
<td>Wild type</td>
<td>—</td>
<td>K132E</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
</tr>
<tr>
<td>16</td>
<td>V617F</td>
<td>Wild type</td>
<td>—</td>
<td>S261T/N239D</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
</tr>
<tr>
<td>17</td>
<td>V617F</td>
<td>Wild type</td>
<td>—</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
</tr>
<tr>
<td>18</td>
<td>V617F</td>
<td>Wild type</td>
<td>—</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
</tr>
<tr>
<td>19</td>
<td>V617F</td>
<td>Wild type</td>
<td>—</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
</tr>
<tr>
<td>20</td>
<td>V617F</td>
<td>Wild type</td>
<td>—</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
</tr>
<tr>
<td>21</td>
<td>V617F</td>
<td>Wild type</td>
<td>—</td>
<td>Wild type</td>
<td>R132G</td>
<td>Wild type</td>
<td>Wild type</td>
</tr>
<tr>
<td>22</td>
<td>Wild type</td>
<td>W515L</td>
<td>Yes</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
<td>Wild type</td>
</tr>
</tbody>
</table>

* UPD denotes uniparental disomy.
that TP53 mutations were detectable in both patients during the chronic phase suggests that TP53 mutations may predict leukemic transformation in myeloproliferative neoplasms.

Ashot Harutyunyan, M.D.
Thorsten Klampfl, Mag.
Center for Molecular Medicine
Vienna, Austria

Mario Cazzola, M.D.
University of Pavia
Pavia, Italy

Robert Kralovics, Ph.D.
Center for Molecular Medicine
Vienna, Austria
robert.kralovics@cemm.oeaw.ac.at

Disclosure forms provided by the authors are available with the full text of this letter at NEJM.org.

INSTRUCTIONS FOR LETTERS TO THE EDITOR

Letters to the Editor are considered for publication, subject to editing and abridgment, provided they do not contain material that has been submitted or published elsewhere. Please note the following:

• Letters in reference to a Journal article must not exceed 175 words (excluding references) and must be received within 3 weeks after publication of the article.
• Letters not related to a Journal article must not exceed 400 words.
• A letter can have no more than five references and one figure or table.
• A letter can be signed by no more than three authors.
• Financial associations or other possible conflicts of interest must be disclosed. Disclosures will be published with the letters. (For authors of Journal articles who are responding to letters, we will only publish new relevant relationships that have developed since publication of the article.)
• Include your full mailing address, telephone number, fax number, and e-mail address with your letter.
• All letters must be submitted at authors.NEJM.org.

Letters that do not adhere to these instructions will not be considered. We will notify you when we have made a decision about possible publication. Letters regarding a recent Journal article may be shared with the authors of that article. We are unable to provide prepublication proofs. Submission of a letter constitutes permission for the Massachusetts Medical Society, its licensees, and its assignees to use it in the Journal’s various print and electronic publications and in collections, revisions, and any other form or medium.

CORRECTIONS

Telemonitoring in Patients with Heart Failure (December 9, 2010;363:2301-9). In Table 1 (page 2305), the data for white race were incorrect. In the Telemonitoring column, the number of patients should have been 414, rather than 413, and in the Usual Care column, the number and percentage should have been 401 (48.5), rather than 402 (48.6). The article is correct at NEJM.org.

Tourette’s Syndrome (December 9, 2010;363:2332-8). In the final paragraph (page 2337), the third to last sentence, beginning “For combined . . . ,” should have ended, “. . . although this agent is not approved by the FDA for Tourette’s syndrome,” rather than “. . . although this agent is not approved by the FDA for these conditions.” We regret the error. The article is correct at NEJM.org.

CORRECTIONS